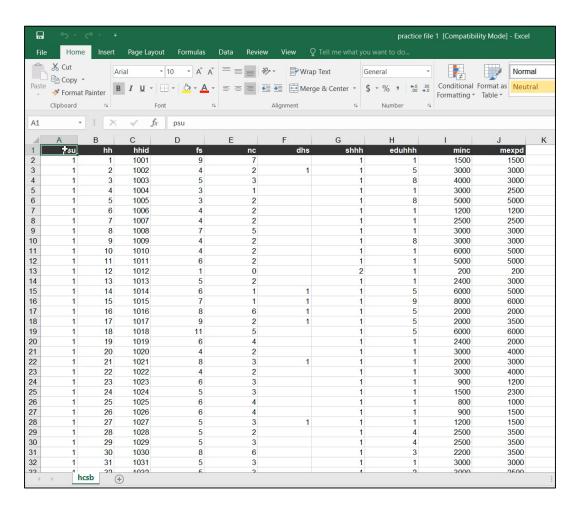
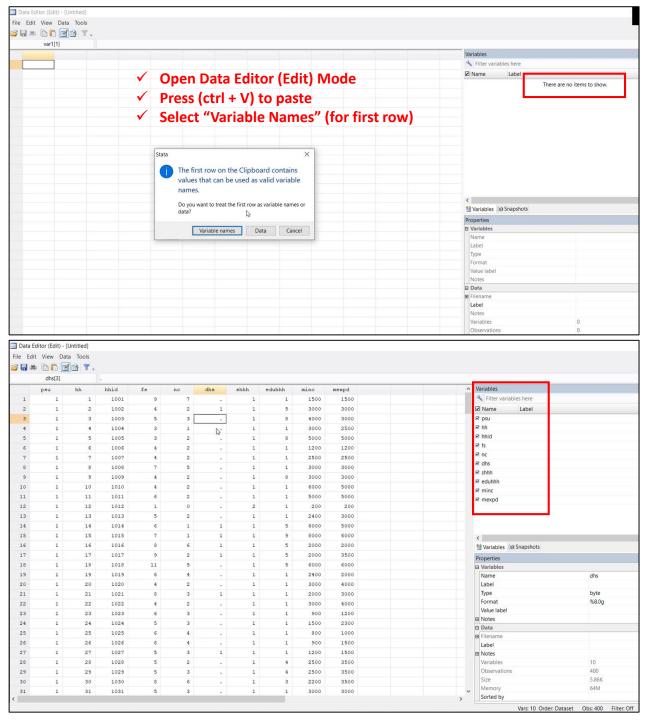

Crash Program on Econometrics Application

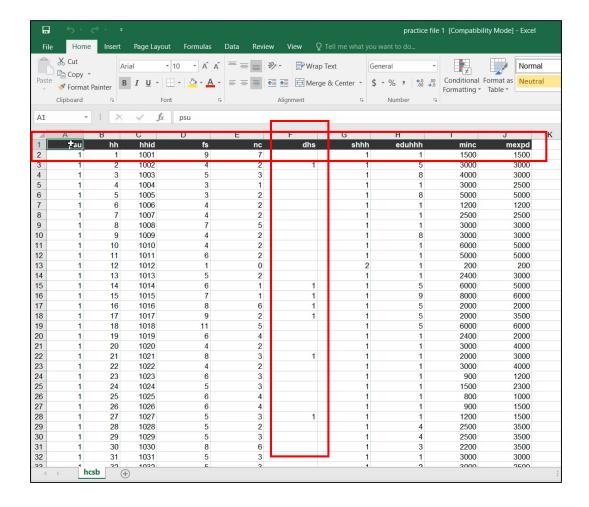
Session 1: Introduction to Stata

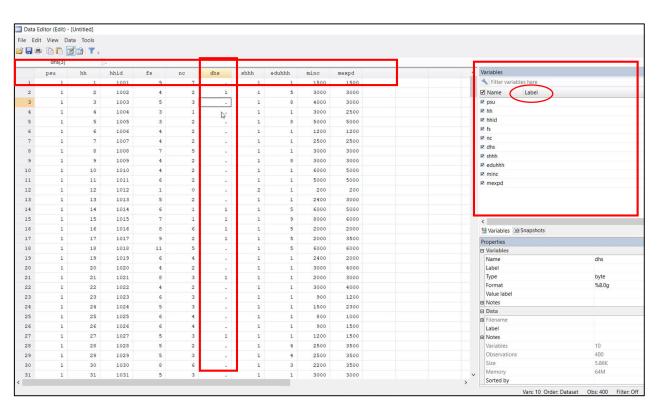

Farhin Islam
Research Associate, SANEM

29 August 2022


Stata Interface

Import data from Excel




[✓] Select data (ctrl + A)

[√] Copy data (ctrl + C)

Import data from Excel

Keep in mind that

- ✓ Missing data should be blank in excel
- ✓ Missing data will be automatically dot (.) in Stata
- √ There should be no space in variable names
- ✓ Label variables after importing from excel

Examining data

- browse: br variable_names
- edit: ed variable_names
- describe: des variable_names
- inspect: ins variable_names
- codebook: codebook variable_names
- List in result window: *list variable_names*
- Count observations: count

Using "in"

- br variable_names in 1/10
- ins variable_names in f/5
- codebook variable_names in -5/l
- list variable_names in 11/20

Relational operators

Operators	Operations
==	Equal to
!=	Not Equal to
>	Greater than
>=	Greater than equal to
<	Less than
<=	Less than equal to

- br variable_names if dhs==.
- br variable_names if dhs!=.
- count if minc<5000
- *count if mexpd>=5000*

Labelling variables

lab var fs "family size (number of hh members)"

Labelling values

lab define shhh_lbl 1 "Male" 2 "Female" lab values shhh shhh_lbl Value

rename variable, replace values

Command: rename old_name new_name

Example: rename shhh gender

Get average minc: tabstat minc

Replace missing value: replace minc=2704.125 if minc==.

Undo manually: *replace minc=. if minc==2704.125*

keep / drop variables or observations

Keeping variables: keep psu hh hhid fs nc gender eduhhh minc mexpd

Or, dropping variables: drop dhs

Keeping observations: *keep if minc!=*.

Or, dropping observations: *drop if minc==*.

Generating variable

....using arithmetic operator

- gen msav=minc-mexpd
- gen msavsq=msav^2
- gen pc_minc=minc/fs
- gen msav_rate=msav/minc if minc!=0

Symbol	Operator		
+	Addition		
-	Subtraction		
*	Multiplication		
/	Division		
^	Raise to the power		

- gen fdummy=.
- replace fdummy=1 if gender==2
- replace fdummy=0 if gender==1

can use "recode" instead

Generating variable

....using function

•	gen	Iminc=l	ogl	minc)	
	9		- 91		

Function for gen command	Use
log(x) or ln(x)	(Natural) logarithm of x
abs(x)	Absolute value of x
exp(x)	Antilog of x
int(x)	Truncation to integer value
round(x)	Rounds to the nearest integer
round(x,y)	x rounded in y decimal place
sqrt(x)	Square root of x

"egen" = extended generation

- egen avgminc=mean(minc)
- gen gavgminc=mean(minc), by(gender)

.....more details later with household survey data

Recode variable

....to categorize

recode eduhhh (min/5=1 "Primary") (6/10=2 "Secondary") (11/12=3 "Highersecondary") (13/max=4 "Graduation"), gen(educ) recode gender (1=0) (2=1), gen(fdummy2)

eduhhh	educ	gender	fdummy2
1	Primary	1	0
1	Primary	1	0
1	Primary	2	1
1	Primary	1	0
5	Primary	1	0
9	Secondary	1	0
5	Primary	1	0
5	Primary	1	0
5	Primary	1	0
1	Primary	1	0
1	Primary	1	0

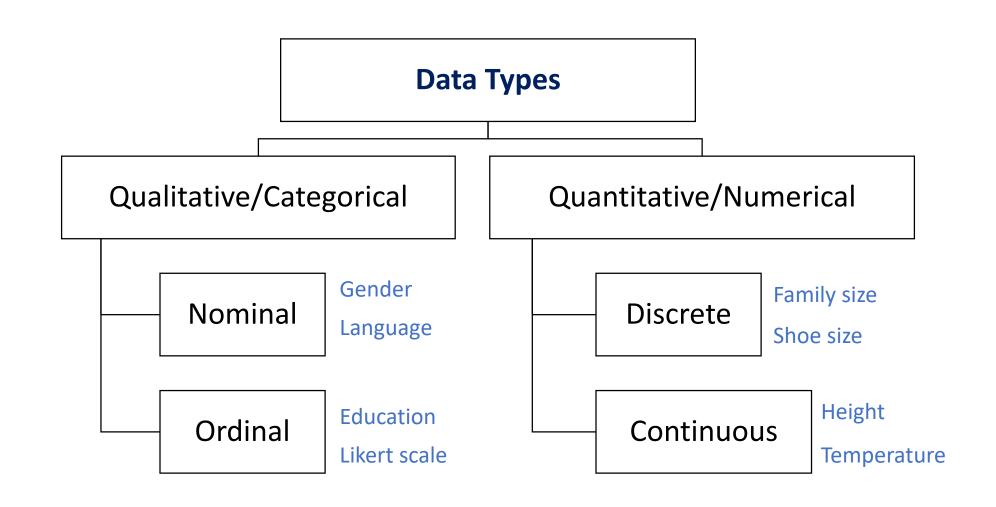
Logical operators

....after "if"

Operator	Symbol
Or	
And	&

br if gender==1 & minc >5000

gen dummy=0 replace dummy=1 if minc>5000 | mexpd>5000


Order & Sort

order psu hh hhid minc mexpd

order variables at the beginning of the dataset

sort gender fs sort psu hh

sort observations by values

Descriptive statistics: categorical

tab gender			
sex of household head	Freq.	Percent	Cum.
Male	367	91.98	91.98
Female	32	8.02	100.00
Total	399	100.00	

Key

sex of

head

Male

Female

Total

322

30

91.48

8.52

352

100.00

43

2

45

95.56

4.44

100.00

2

0

2

0.00

100.00

100.00

367

32

8.02

399

100.00

91.98

Male

Female

Total

household

sex of household		uhhh (educat nold head)	ion of	
head	primary Sec	condary hig	hersec	Total
Male	322	43	2	367
Female	30	2	0	32
Dotal	352	45	2	

tab gender educ, column tab gender educ, row RECODE of eduhhh (education of household head) and primary sex of household head sampling — primary — - Secondary -- higherseco wkey unit Male Female Male Female Male Female frequency frequency 15 column percentage row percentage 76 15 11 81 10 2 RECODE of eduhhh (education of RECODE of eduhhh (education sex of household head) household household head) primary Secondary highersec Total primary Secondary highersec head Total

43

2

45

6.25

11.28

11.72

322

30

87.74

93.75

352

88.22

2

0

2

0.54

0.00

0.50

table psu gender educ

367

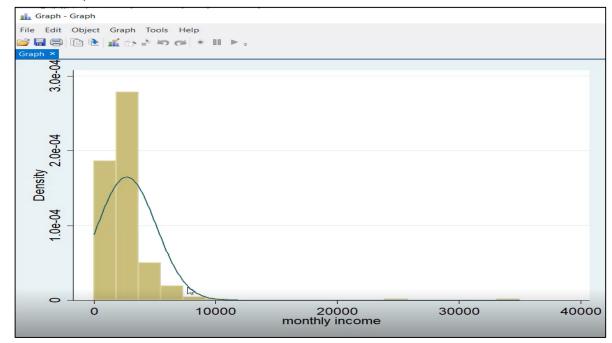
32

399

100.00

100.00

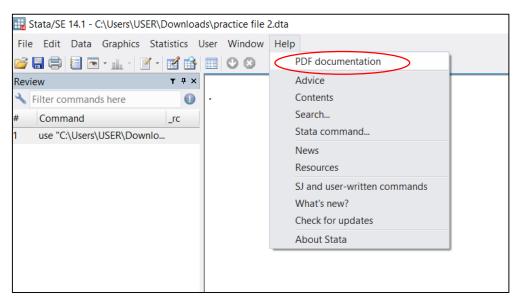
100.00

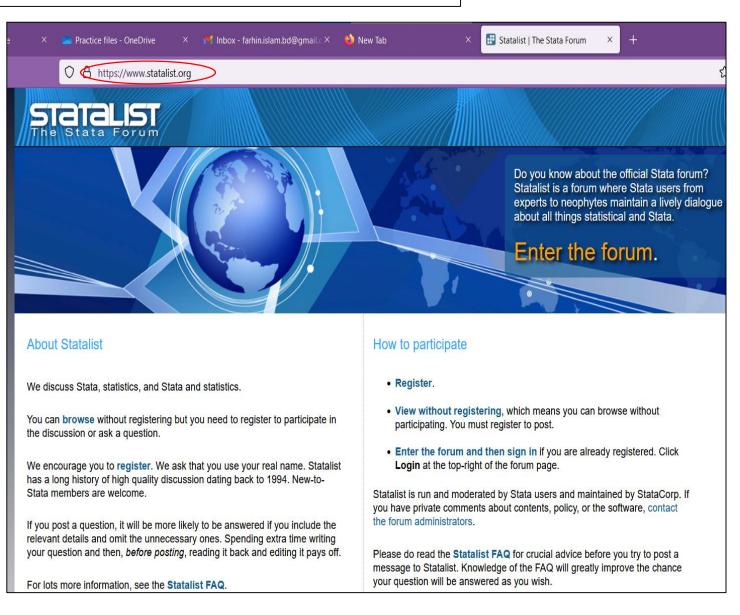

. tabstat minc, by(gender) Summary for variables: minc by categories of: gender gender mean Male 2827.112 Female 1293.75 Total 2704.135

Descriptive statistics: numerical

1	/ariable	Obs	Mean	Std. Dev.	Min	Max
	minc	399	2704.135	2416.017	0	35000
	mexpd	399	2979.323	1997.616	150	30000
	Percentiles	mont.	hly income			
	Percentiles	Smal	lest			
1%	250		0			
	000		150			
5%	900					
	1000		200	Obs	399	
10%				Obs Sum of Wgt.	399 399	
10% 25%	1000		200		\$100 m	
10% 25%	1000 1500	Lar	200	Sum of Wgt.	399	
.0% 25% 50%	1000 1500		200 250	Sum of Wgt. Mean	399 2704.135	
10% 25% 50%	1000 1500 2400		200 250 gest	Sum of Wgt. Mean	399 2704.135	
5% 10% 25% 50% 75% 90%	1000 1500 2400 3000	1	200 250 gest 8000	Sum of Wgt. Mean Std. Dev.	399 2704.135 2416.017	

sum minc if ger	der==1				
Variable	Obs	Mean	Std. Dev.	Min	Max
minc	367	2827.112	2470.743	0	35000


hist minc, norm


ssc install univar

. univar mi	.nc					0		
Variable	n	Mean	S.D.		.25	- Quantil Mdn	es .75	Max
minc	400	2701.13	2413.74	0.00	1500.00	2400.00	3000.00	35000.00

Get help, find/install packages, and more..

- ssc install extremes
- extremes minc
- ssc uninstall extremes
- ssc hot
- ssc install asdoc
- findit asdoc
- help asdoc
- help reg

Working directory

Before doing anything with an open Stata file, you should always define the location of your working folder. Your 'working folder' is a folder on (one of) your drives where you keep all of your data for a particular project or piece of analysis.

If you have never been so organized with your data sets, now is an excellent time to start! Doing a bunch of analyses using multiple datasets and having the files all jumbled in with other documents or spread all over the place in separate folders is not a correct way to use Stata!

Check current working directory with the command:

pwd

Change working directory:

Go to File ⇒ Change Working Directory ⇒ Select specific folder. Or, use following command:

```
cd "...folder path...\filename"
```

What is Do File?

Do files are simply text files whose names end with .do and which contain Stata commands exactly the way you'd type them into the command window. Sometimes people call them programs, though Stata uses this term for something else. You can write do files using any text editor, but the Do File Editor built into Stata has tools and features designed to help programmers so we recommend using it. Do not write Stata code using Word—it will automatically insert things like "smart quotes" and other formatting that Stata cannot understand. You should save all your commands (total workflow) in a do file.

Starting a Do file:

Start the Do File Editor by clicking on the button that looks like a pencil writing in a notebook or by typing doedit in the command line. Alternatively use Window \Rightarrow Do-file editor.

Use File \Rightarrow Open, from within the editor and look for the desired file. Alternatively, in the Review window you should see a copy of the command that was generated while executing commands. Copy this command and paste it into the do file. Save this file using File \Rightarrow Save, from within the do file editor. Only through this way, your commands will not disappear after quitting Stata.

Setting Up:

Almost every do file should start with the following commands (or something very much like them):

```
clear all set more off
```

The first command clears the memory so you don't have to worry about what might have happened before your do file was run. The second tells Stata not to pause whenever the screen fills and wait for you to press a key.

Loading Data:

Next you will usually load a data set:

```
use dataset_name.dta
```

If the dataset is in the current working directory, you don't need to specify its location.

Do Your Work:

At this point you'll be ready to do your work. Generally, this means data preparation, exploratory analysis, or analysis you intend to report or publish. We recommend you to use do file for this. Write the commands in the do file serially.

Save your new dataset:

You may need to save your work (new data file after all the modifications) at the end:

```
save new_dataset_name.dta, replace
```

The replace option again allows Stata to overwrite the output from previous attempts to run the do file. Otherwise, the do file will not run 2nd time because there is already a dataset with that name.

Never, ever save your output data set over your input data set. (In other words, the starting use command and the ending save command should never act on the same file.) If you do, the data set your do file was written to work with will no longer exist. If it turns out you made a mistake, you can't easily recover.

Clearing everything from memory, loading the data set you want to use, and then saving any changes you make to a different file (with different name) makes your do file reproducible. You can run it again any time you want and get the exact same results. If the input data set changes, you'll be applying the exact same procedures to the new data. If it turns out you made a mistake, all you need to do is correct the error in your code and run the do file again. If you need to make changes you can do so without starting over. It may take a bit of effort at first to get into the habit of writing reproducible code, but the effort will pay off very quickly.

Comments in Do file:

Comments are text included in a do file for the **benefit of human readers**, **not for Stata**. Comments can explain what the do file does and why, and if anyone else ever needs to read and understand your do file they'll be very grateful for good comments. Or *you* are the most beneficiary of your comments, when you have to figure out how your do file works months or years after writing it. Be sure to comment any code that required particular cleverness to write.

Comments need to be marked as such so that Stata will not try to execute them. /* means Stata should ignore everything until it sees */, while // means Stata should ignore the rest of that line. Here's how one might comment:

```
//make a list of cars I might be interested in buying
list make price mpg rep78 if price<4000 | (price<5000 & rep78>3 & rep78<.)
/* Note:
Some cars will appear on the list even though they have a missing value for rep78.
This is not an error.
If their price is less than $4,000 I don't care about their repair record.
*/</pre>
```

Save Do file:

File \Rightarrow Save as (In do file window)

Running a Do File:

The easiest way to run a do file is to press **Ctrl+d** in the Do File Editor, or click the icon on the far right that looks like a "play" button over some code. **If you first select just part of the do file then only that part will be run.**

Running parts of your code rather than the entire do file can save a lot of time, but code taken out of context won't always work. For example, if you run a command that creates a variable x, realize you made a mistake, and then fix it, you can't simply select that command and run it again unless you first drop the existing version of x. If you find yourself getting confused by these kinds of issues, run the entire do file rather than a selection so everything is run in its proper context with appropriate serial.

Log file

What is Log File?

It is used to keep a record of the results obtained while using Stata. A research do file should have a corresponding log file which records all the commands the do file ran along with their results.

Start a Log:

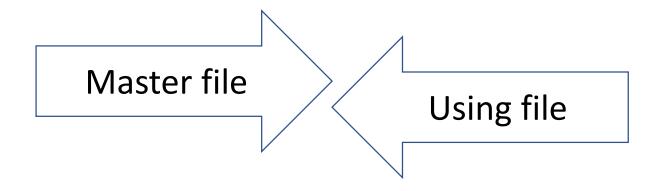
To start logging, the command is:

```
log using logfilename.log, replace
```

where logfilename is the name of the file you want Stata to use as a log. **Give the log file the same name as the do file it records**, so it's obvious which log file goes with which do file. The **replace** option will overwrite the previous version. Alternatively, an append option will add to the previous contents of the log file.

Then do your work using do file.

Close your Log:


The command is: log close

Or, go to File \Rightarrow Log \Rightarrow Close

Merge & Append

.....Joining two datasets together

Merge	Append
Adds variables/columns	Adds observations/rows

Append

- Append adds cases/observations to a dataset by joining two datasets together.
- In Append, we join two datasets:
 - Master file: the data file with which we will append the other file
 - Using file: the data file we will be appending with the master file.
- To append a using file with a master file, they must have:
 - Common variables with same name in two datasets for all observations.
 - Each variable must be in the same format in both the master file and the using file.
 - If you attempt to append a using dataset with variables that do not match with the master dataset, they will be added to the appended dataset as additional variables.

Append

Master file

Appended Dataset

	id	id age	
1	1	20	8
2	2	25	5
3	3	23	0
4	4	40	10

Using file

	id	age
1	5	70
2	6	10
3	7	45

		id	age	edu
	1	1	20	8
	2	2	25	5
•	3	3	23	0
7	4	4	40	10
	5	5	70	-
	6	6	10	
	7	7	45	•

Merge

- Merge adds variables to a dataset by joining two datasets together.
- In merge, we join two datasets:
 - Master file: the data file with which we will merge the other file
 - Using file: the data file we will be merging with the master file.
- To merge a using file with a master file, they must have:
 - At least a common variable (key variable) based on which we will merge.
 - There can be more than one key variables
 - The key variables must have the same name.
 - The variable must be in the same format in both the master file and the using file.
 - If they are in *string (alphanumeric)* format in the both the files, their spelling must be same (i.e. country names, etc).
- Merge could be of four types:
 - 1:1 (one to one) merge, m:1 (many to one) merge, 1:m (one to many) merge and m:m (many to many) merge.

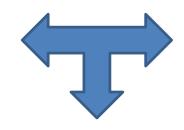
Merge (1:1)

Master file

	country	year	x1	x2	xЗ
1	А	1990	100	200	510
2	А	2000	105	215	550
3	Α	2010	110	250	630
4	Α	2015	115	271.667	683.333
5	В	1990	120	296.667	743.333
6	В	2000	125	321.667	803.333
7	В	2010	130	346.667	863.333
8	В	2015	135	371.667	923.333
9	C	1990	140	396.667	983.333
10	C	2000	145	421.667	1043.33
11	C	2010	150	446.667	1103.33
12	C	2015	155	471.667	1163.33

Using file

		country	year	у1	у2
1	1	А	1990	340	600
-	2	А	2000	380	800
-	3	А	2010	420	1200
-	4	А	2014	460	1466.67
-	5	В	1990	500	1766.67
-	6	В	2000	5 4 0	2066.67
	7	В	2010	580	2366.67
	8	В	2014	620	2666.67
-	9	C	1990	660	2966.67
-	10	C	2000	700	3266.67
-	11	C	2010	740	3566.67
	12	C	2014	780	3866.67


	country	year	x1	x2	х3	у1	у2	_merge
1	A	1990	100	200	510	340	600	matched (3)
2	А	2000	105	215	550	380	800	matched (3)
3	А	2010	110	250	630	420	1200	matched (3)
4	А	2015	115	271.667	683.333		-	master only (1)
5	В	1990	120	296.667	743.333	500	1766.67	matched (3)
6	В	2000	125	321.667	803.333	5 4 0	2066.67	matched (3)
7	В	2010	130	346.667	863.333	580	2366.67	matched (3)
8	В	2015	135	371.667	923.333			master only (1)
9	C	1990	140	396.667	983.333	660	2966.67	matched (3)
10	C	2000	145	421.667	1043.33	700	3266.67	matched (3)
11	C	2010	150	446.667	1103.33	740	3566.67	matched (3)
12	C	2015	155	471.667	1163.33			master only (1)
13	А	2014			-	460	1466.67	using only (2)
14	В	2014			-	620	2666.67	using only (2)
15	C	2014				780	3866.67	using only (2)

Merged dataset (One to One) 1:1

Merge (1:m)

Using file

	country	year	x1	x2	х3
1	А	1990	100	200	510
2	А	2000	105	215	550
3	А	2010	110	250	630
4	А	2015	115	271.667	683.333
5	В	1990	120	296.667	743.333
6	В	2000	125	321.667	803.333
7	В	2010	130	346.667	863.333
8	В	2015	135	371.667	923.333
9	C	1990	140	396.667	983.333
10	C	2000	145	421.667	1043.33
11	C	2010	150	446.667	1103.33
12	C	2015	155	471.667	1163.33

Master file

	country	у1	y2
1	Α	340	600
2	В	380	800
3	С	420	1200

Merged dataset (One to Many) 1:m

country	year	X1	X2	X3	y1	y2	_merge
А	1990	100	200	510	340	600	matched (3)
A	2000	105	215	550	340	600	matched (3)
A	2010	110	250	630	340	600	matched (3)
A	2015	115	271.667	683.333	340	600	matched (3)
В	1990	120	296.667	743.333	380	800	matched (3)
В	2000	125	321.667	803.333	380	800	matched (3)
В	2010	130	346.667	863.333	380	800	matched (3)
В	2015	135	371.667	923.333	380	800	matched (3)
C	1990	140	396.667	983.333	420	1200	matched (3)
C	2000	145	421.667	1043.33	420	1200	matched (3)
C	2010	150	446.667	1103.33	420	1200	matched (3)
C	2015	155	471.667	1163.33	420	1200	matched (3)

Thank you!